AD NO.
REPORT NO. ATC-8563

RESEARCH REPORT
POINT REACTOR
KINETIC ANALYSIS

DARYL E. NEHER Il

RADIATION TEAM
SURVIVABILITY/LETHALITY CORE

U.S. ARMY ABERDEEN TEST CENTER
ABERDEEN PROVING GROUND, MD 21005-5059

DECEMBER 2002

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20030220 125

U.S. ARMY DEVELOPMENTAL TEST COMMAND
ABERDEEN PROVING GROUND, MD 21005-5055 DISTRIBUTION UNLIMITED.

DISPOSITION INSTRUCTIONS

Destroy this document when no longer needed. Do not return to
the originator.

The use of trade names in this document does not constitute an official
endorsement or approval of the use of such commercial hardware or
software. This document may not be cited for purposes of advertisement.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall bef
subject to any penalty for failing to comply with a collection of information if it does not disptay a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From - To/
December 2002 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

RESEARCH REPORT POINT REACTOR KINETICS ANALYSIS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Neher II, Daryl E.

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Commander REPORT NUMBER
U.S. Army Aberdeen Test Center ATC-8653

ATTN: CSTE-DTC-AT-SL-R
‘Aberdeen Proving Ground, MD 21005-5059

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR’'S REPORT
NUMBER(S)
Same as Item 8

12. DISTRIBUTION/AVAILABILITY STATEMENT
Distribution Unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A computer code was written using a point reactor kinetics model Program results are compared to previous theoretical and APRE
empirical pulse data. The program is used to determine temperature transients for different scram failures. The pulse-less tail
mode of operation is discussed.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF [18. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT g: GES
Unclassified | Unclassified| Unclassified SAR 19b. TELEPHONE NUMBER (/nclude area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

SQnp D=

gaw»

TABLE OF CONTENTS

PAGE
INTRODUCTION . .« eeee et e e ettt e e et e e e eeean, 1
THEORY AND PROGRAMttt iiae e e aeneeeeennans 1
RESULTS AND ANALYSIS ...ttt e iieeaaeeannaeenns 3
PULSE-LESS TAIL OPERATIONSuutitneeerneennnaeannnneen 11
CONCLUSIONS . .+ e vttt et e e e e e e e 13
REFERENCES . . . e ettt ettt e e e e et i e 14
APPENDIXES
DERIVATION OF FORMULAS INPROGRAM\ ieevireeeeennnns A-l
POINTRX PROGRAMottt e e iae e e e e B-1
HEAT CAPACITY DERIVATION\ttt teieeeeeeineeeeennnn c-1
SAFETY BLOCK AND PULSEROD TIMING eveeeraennnnnee. D-1
i

(Page ii Blank)

1. INTRODUCTION

This report describes the construction of a computer program, POINTRX, to model the
behavior of the Army Pulse Radiation Facility (APRF) pulse research reactor. Parameters such
as power, reactivity, and temperature have been calculated as a function of time. The computer
model was created so that all significant variables can be input into the code; therefore, it is
adaptable for analysis of a variety of nuclear reactor power excursions. The program may be
used to conduct a safety analysis of the reactor.

One mode of operation discussed in this report is the pulse-less tail operation. Other
facilities with fast burst reactors have conducted small pulse operations where the scramming
mechanism is delayed after the pulse, but the purpose of a pulse-less tail operation is to provide a
high power level for a short duration. After a pulse, the reactor power will level or plateau at a
certain power level, independent of the reactivity insertion. When the reactivity insertion is
exactly prompt, critical reactor power rises quickly and levels at the same power of the plateau
with no power spike. This type of operation is called a pulse-less tail operation.

2. THEORY AND PROGRAM

The kinetics equations for a point-reactor model are as follows:

an_p=Bisac wd %Py e,
¢ a4

where: n is reactor power, p is the reactivity, B; is the delayed neutron fraction of delayed
neutron precursor i, A; is the delayed neutron decay constant for precursor i, £ is the neutron
generation time, and C; is the delayed neutron precursor population. Note that, the sum of all six
B:is B. Slow transients in a fast reactor requires the solution of systems of equations containing
very short time constants. Using the integral form of these equations will allow a numerical
solution in which the computer code can control the time step by many orders of magnitude and
maintain numeric stability. The integrals are evaluated analytically using the assumption that
power follows the form: n(t)=n.e™. Therefore, the only numerical approximation is the
assumption that A is constant in the above equation throughout the time interval.

Substitute the integral form for C from the second equation into the first equation, and
integrate to obtain an equation for power:

I ' U o) g0 s Bt A=) 70
n)=ny+ L pOn(t)dt’ + ZAC, j e a =%t j n(t)e™dr

The equation for reactivity has the form:

dp
< = t
5 =)

0, p(0)= py +at [n(@)dr

and with the assumption:

n()=nee™, p) = py + 2 e* -1)

where: a, in units of dk/kW-sec, is the negative reactivity coefficient, which in this case
includes the conversion of reactor power into heat generation. Substituting this result and our
assumption into the power equation, we can integrate to get an equation that can be solved
numerically:

2 -xh
n()=n, + L2 (% _1)+ gz"7[1@“’” +1)- e"") 3G, (e -1y -z, PR feann)
¢4 47 \2 ° U A

where: h is t-tg.

A computer code, POINTRX, was written to solve the equation for A for a small time
increment, h. After A has been determined, reactor power and reactivity are easily calculated.
These values are then used as the basis for the next time increment. The complete derivation of
these equations and the formulas used in the code are found in Appendix A. The source code for
POINTRX, with a sample input file, is attached as Appendix B.

The reactivity coefficient of -0.3 cents/°C was used in the analysis. This negative
reactivity coefficient was obtained from the APR Core Design Summary, L. Goldstein (1966).
The axial and radial coefficients are combined and were calculated with two-dimensional
transport theory using the S4 approximation with six neutron energy groups. Additionally, in
order to calculate o in the code, it is necessary to determine the heat capacity of the core in units
of °C/kW-sec. From previous high-power, steady-state operations at Sand 10 kW, where
cooling was not used, the indicated reactor temperature rise was divided by the integrated power
for that interval and determined to be 0.04683 °C/kW-sec. The graphs used for determination of
temperature rise per kW-sec are included in Appendix C.

Since these data were obtained from in-core thermocouple No. 7, the temperature data
from the program should be indicative of thermocouple No.7 data. However, the APRF
technical specifications point out that the peak to measured ratio is much smaller for steady-state
operations than pulse operations. Since the 5 and 10 kW operations were relatively short in
duration, the program is expected to produce data that are only slightly less than measured data.
Furthermore, it should be pointed out that the program has no method for removing heat; thus,
heat in the core is always accumulating. This is a reasonable approximation during the pulse as
an insignificant amount of heat would have dissipated in the short time elapsed; however, when
investigating temperature rise over long time intervals, the results will be conservative.

2

A value of 9.7 ns for the prompt neutron lifetime was reported by J. T. Mihalczo (1969)
and calculated from measurements using both Rossi-o. and pulsed neutron techniques.
APRF Memorandum for Record 78-68 uses a value of 11.25 ns but does not cite a reference and
BRL Contract Report No. 82 also uses a value of 11.25 ns and cites the Mihalczo report, even
though this is incorrect. Furthermore, a value of 11.26 ns was calculated using a simple APRF
reactor model, by Monte Carlo method, using the MCNP4C code. From calculations using
POINTRX, it was discovered that the neutron generation time only affects the prompt period and
pulse width. Changing the generation time had no effect on the temperature rise or integrated
power, which is of more concern for safety analysis aspects; thus, the neutron generation value
of 10 ns was used in the calculations.

The safety block drop time of 200 ms was obtained from safety block drop test records.
This test uses a digital oscilloscope to record the time that the scram signal is received from the
scram switch and to signal from the safety block out-switch on the reactor package. The 200 ms
is the time the safety block takes to be completely out of the core. From previous pulse records
in automatic mode, the timer stopped an average of 50 ms after the neutron generator fired. This
is the time when the safety block starts to move since the clock stops when the safety block
magnet is no longer engaged. Thus, the safety block magnet collapses in 50 ms and the travel
time for the safety block is 150 ms. For simplicity of this study, the safety block was removed
linearly, $1 every 10 ms up to 150 ms for a total of $15. ‘The actual removal of the safety block
would start slow and proceed quicker with time; therefore, this study uses a conservative
reactivity worth of $15 for the safety block and which is reported as $20 by the APRF Safety
Analysis Report.

 An analysis is performed of the circumstance where the safety block fails to fall after a
pulse but the pulse rod does retract. The safety block drop test method was used in analyzing the
timing of the pulse rod. The time from the scram signal to the movement of the pulse rod was
measured to be 160 ms. The drop time for the pulse rod to be completely out of the core was
measured to be 360 ms. For this analysis, the pulse rod is removed in the same manner as the
safety block, $0.0353 every 30 ms up to 360 ms. Normally, the rise time in a pulse is fast
enough that the safety channels will trip a scram within hundreds of microseconds of the start of
the pulse; therefore, time zero is sufficient to start the time delay of the movement of the safety
block or pulse rod. The drop test and pulse rod data sheets are included as Appendix D.

3. RESULTS AND ANALYSIS

The program calculates a number for A in the code; this number is the inverse of the
reactor period, commonly called alpha, but, this is not the same alpha in the reactivity equation.
Figure 1 shows the calculated alpha versus reactivity insertion. The points are measured data
and the spread is due to instrument error and changes in reactor behavior. By space independent
neutron kinetic theory, the slope of the linear relation between the reciprocal prompt reactor
period and the core reactivity above prompt critical is the prompt neutron decay constant, or
neutron generation time at delayed critical. If we drew a line through the data points (dashed line
below) the inverse of this slope yields a prompt neutron lifetime of 11.26 ns; thus, the 10 ns
neutron generation time used is a good approximation. However, while the line of calculated
data passes very close to zero, the measured data do not seem to pass through the same point.

3

When measuring the reactivity of the pulse rod prior to a pulse, a mini-pulse is performed
inserting approximately 92 cents above delayed critical. Using the Inhour curve, the dynamic
reactivity worth of the pulse rod is determined. The dynamic and static worth of the pulse rod
are different by a few cents, and thus, there must be a small difference between the pulse rod
dynamic worth at 92 cents and above prompt critical. Therefore, the difference of the
juxtaposition of the calculated versus measured data, which appears to be between 1 and 2 cents,
is the difference in the measured versus true worth of the reactivity insertion.

~
o

60 —1 o Measured ‘ /,./-
o~ 50 +— —8— Calculated ‘
@ PR B Linear (Measured) | / o oot oo
5 /./ ’--..-
iol 1
® 20 /;, =

10 4 Ll

L ¥
0 r

104 106 108 110
Reactivity(cents)

-
8
e
(=]
N

Figure 1. Comparison of measured and calculated alpha.

The program was used to compute the reactor periods for various reactivity insertions.
Figure 2 shows the relationship between reactor period and reactivity with the prompt neutron
lifetime of 10 ns and 1 ms, with all other variables remaining the same. Compare this to the
Inhour curve (fig. 3) from Nuclear Reactor Engineering (Glasstone and Sesonske 1981). The
prompt neutron lifetime of 1 ms would be a lifetime associated with a thermal reactor. Since the
model is that of a point reactor, relative size is not a factor; thus, the program is also applicable
to thermal reactor power excursions with the correct input parameters.

0.010

0.008

0.006

Reactivity

0.004

0.002

0.000

1E6 1E-5 1E4 1E3 1E2 1E-1 1E+0 1E+1 1E+2 1E+3
Reactor Period(sec)

Figure 2. Prompt neutron lifetime comparison.

0.010
1 I i i | i i |
3 -
o5 1075 107 107
0.008— w07\ -
- PROMPT _ -
1= 1078 SEC CRITICAL
¥ 0.006 -
2]
3
w0004~ -~
0.002 |— -
0]] |] |] i |
we wd w0t w3 w2 w0 1 10 102 103

REACTOR PERIOD, sec

Figure 3. Relationship between reactor period and reactivity for various prompt lifetimes.

Figure 4 shows the shape of a set of pulses calculated by the program on a log/log plot.
This shape is similar to the reactor gamma dose rate profile data obtained from photo diode
measurements as presented in Figure 5. Note that, after the pulse, the reactor power will plateau
until the scram occurs and this plateau region is a significant source of integrated power; thus
altering the timing of the scram could change the integrated power by a significant percentage.

1,408

1.E407 §- . — ;
1108 — . h\{\ - - | ——$1.02
1.E405 ‘ I/ i\« » ; S04 |
1.E+04 ¥ : //\{J \L' - _:::ggs

Power(kw)

o
o S 1
/vy

1.E401 §-

1.E+00 —-

1E01 §

1.E-02 EZ—rrrr— S —
1.E-05 1.E04 1E03 1.E-02 1.E-01

Time(sec)

T

1.E+00 1.E+01 1.E402

Figure 4. Pulse profiles.

1.8E.7

T |lllnq T T llluul T llnTﬂr‘ﬁ T T 1T

1.0E+6 -
1.0E+S
1.8E+4
1000.0 |~
100.6

16.0

PDE4 @ 1 METER ON EET/FF
RADS(S{)/SEC

IJud,_L_LLuju' NI MW WETIT o
160.6us 1.0n8 10.0n5 100.0nS 1.5 10.08

TIHE

Figure 5. 9.6 x 10'® fission pulse/$1.088 reactivity insertion.

A comparison of calculated versus measured pulse parameters for various reactivity
insertions are presented in Table 1. The data presented here have been calculated out to
30 seconds. The data indicate that pulse-width-at-half-maximum (PWHM) can be predicted with
very high accuracy for large pulses, but not for smaller pulses. The differences in the calculated
prompt periods and the measured prompt periods are probably an artifact of the method used in
the measurement of the dynamic worth of the pulse rod. As mentioned previously, there is a
difference of 1 to 2 cents in the true worth of the pulse rod at prompt critical to the dynamic
worth measured in a mini-pulse.

TABLE 1. CALCULATED AND MEASURED PULSE PARAMETERS

Temperature
Integrated Power Period, psec PWHM, psec Change, °C
Reactivity[Measured|Calculated[Measured|Calculated|Measured Calculated|Measured|Calculated

102.0 7.0 9.3 135.0 74 600 278 25 26
104.0 14.5 14.7 73.0 44 175 129 48 42
105.0 19.0 17.5 48.0 29 125 109 66 49
106.5 28.0 21.5 32.0 22 80 82 93 60
109.0 54.0 28.0 21.5 16 56 56 175 79
109.6 62.0 29.5 21.0 15 55 55 210 83

Table 2 shows a comparison of calculated values to the theoretical values of Wimett
(1960). For this comparison the calculated values have been converted into the units in Wimett’s
report. Furthermore, Wimett only calculated the fission yield under the spike; thus the total
fission yield is not presented. As expected, the program’s results are very close to theoretical
values.

TABLE 2. CALCULATED AND THEORETICAL
PULSE PARAMETERS

Peak Power, $/sec | Fission Yield, $ PWHM, pisec

Reactivity| Wimett| POINTRX | Wimett| POINTR X | Wimett| POINTRX
1020 | 135 126 | 004 | 0041 |[2610]| 278
1040 | 541 500 | 008 | 0.079 |1300| 129
106.5 | 1413 1370 | 0.13 | 0.129 81.0 82
109.0 |2813 2640 | 0.18 | 0.179 56.3 56

Figures 6 and 7 show a departure of the measured results from calculated results at
approximately $1.05 insertion. This is expected at some point because the model does not
account for hydrodynamic effects. For large insertions of reactivity, the period becomes
increasingly small, as seen in Figure 4. Eventually, the period will be much less than the time
required for pressure waves generated in the core to reach the surface. Thus, the core will not
expand as quick as the pulse is occurring; therefore, the assumption of a constant reactivity
feedback, -0.3cents/°C, will not be accurate.

250

: e
150 ' A
i | . ke

100 . . / - yl

0 T T - - T T : ' T
100 102 104 106 108 110 112
Reactivity(cents)

n
8

Temperature change (C)

50 +

Figure 6. Temperature change versus reactivity insertion.

~
o

02}
o
e

AN

g
N
E

N
Y

Integrated power(kw-min)

|

\:

(=]

100 102 104 106 108 110 112
Reactivity(cents)

Figure 7. Integrated power versus reactivity insertion.

Even though the program results will deviate from measurements at $1.05 insertions, this
does not necessarily preclude the use of the program for safety analysis. Since the program
produces linear relations for temperature and integrated power, the input parameters can be
adjusted such that a certain reactivity insertion will calculate equivalent integrated power and
temperature results for a $1.09 insertion. Since the reactivity feedback changes during large
pulses, this leads to a change in heat capacity. Using the measured data from Table 1, an
effective heat capacity may be obtained by dividing temperature change by integrated power and
averaging the results. This gives a heat capacity of 0.05583 °C/kW-sec. This method of deriving
the heat capacity may be more accurate than the previously stated method using high power
steady-state operations since heat will have less time to migrate during a pulse. Table 3 lists
different measured reactivity insertions correlated to a computed reactivity insertion using the
new value for heat capacity. Using this value, and a reactivity insertion of $1.23, which would

be a very large pulse in reality, the program will calculate a temperature change and integrated
power equivalent to a 107 fission pulse.

TABLE 3. REACTIVITY INSERTION COMPARISON

Reactivity Insertion AT Calculated AT at 120 Seconds
Measured | POINTRX | Measured | Normal | No Scram | PR Scram
102.0 102 25 26 664 164
104.0 105 48 49 684 217
106.5 111 93 93 725 301
109.0 123 175 180 806 435

Figures 8 and 9 compare the power and temperature excursions of a 10" fission pulse,
with a normal scram at 10 kW, to pulses with total and partial scram failures. In the case where
no scram occurs there is no significant drop in power, but instead a more gradual decline in
power due to the negative reactivity provided by temperature (fig. 10). As seen in Table 3, this
is not enough to prevent exceeding the safety limit of 650 °C. Using the peak to measured
multiplication factor of 1.43, from the APRF Technical Specifications to determine peak core
temperature, the safety limit will be reached in 3.2 seconds and core damage will occur at
60 seconds without any operator intervention.

However, if the only scramming mechanism is the pulse rod, the temperature safety limit
will be exceeded in 90 seconds, but no core damage will occur even without operator
intervention. This would give the reactor operator sufficient time to take action, such as
withdrawing rods to remove more reactivity, thus reducing peak temperatures. Furthermore,
these results are considered to be conservative since the heat capacity used to compute alpha in
the program is a constant. The heat capacity for U-10 Mo increases as temperature increases;
thus, more heat is required to raise the temperature as temperature rises. For small temperature
changes this difference is negligible and has been neglected; however, it is more significant with
large temperature changes.

1.E+08 -
1.E+06 +— B :
E 1.E+05 .):) / \ .) PRbn‘(y‘scram‘ 1o scram
€ 1E+04 +— = LT
@ 1.E+03 " e
2 1.E+02 + : : e —
o L/ L RS
a 1.E+01 f / _ = omal seram TN
1/E+00 1— e
1,601 L e RN
1.E-02 | — e I — : (—
1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E40 1.E+1 1.E+2

Time(sec)

Figure 8. 10" fission pulse power profile.

Temperature(C)

Reactivity(cents)

900
800
700
600

500 1§

400

200 T

100

e um
/
/- ¥
— _

20 40 60 80 100

120
Time(sec)
— Normal — No Scram — PR Scram
Figure 9. 10" fission pulse temperature excursion.
150
100 \ -
50 1 Tyi = —ﬂ
-50 + —3
.] PR scram
AL U H P S—
150 +—
-200 ; T T T T
0.00 0.20 0.40 0.60 0.80 1.00

Time(sec)

Figure 10. 10" fission pulse reactivity profile.

10

4. PULSE-LESS TAIL OPERATIONS

It may be possible to take advantage of the plateau power that occurs after a pulse to
operate the reactor at very high power levels for short duration. Figure 11 represents the power
profiles of reactivity insertions near prompt critical with the scram delayed until 1 second after
initiation of the pulse. When the reactivity insertion is exactly prompt critical, there is no power
spike, but the power plateau is approximately the same as higher reactivity insertions. Results of
the calculated temperatures after 30 seconds for these reactivity insertions with delayed scrams at
1, 5, and 10 seconds are listed in Table 4. The temperatures are initially 25 °C, which is the
normal for reactor operations prior to initiating a pulse. Notice that for a normal scram, set point
is 10 kW, the pulse below prompt critical has no temperature change. This is comparable to a
mini-pulse operation where no temperature change is observable.

1.E+5 4 A
1.E+4 B
£ 1E+3 // /
] : _ -
2 1.E+2 =— //4—101 / - / ‘) SAN
*1E+ ya e
s /4 L \ :
1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.E+1 1.E+2
Time(sec)

Figure 11. Pulse profile-scram at 1 second.

TABLE 4. CALCULATED TEMPERATURES WITH VARIOUS SCRAMS

Temperature at 30 Seconds
Reactivity |Plateau Power|10 kW-Scram|Scram-1 sec|Scram-5 sec| Scram-10 sec
99 2.3 MW 25 106 319 432
100 3MW 30 138 336 444
101 4 MW 43 152 347 454
102 6 MW 51 163 357 462

11

By the APRF technical specifications, it is desirable to maintain core temperatures below
350 °C during steady-state operations, although exceptions can be made by the Test Planning
Committee to allow operations up to 650 °C. However, any pulse-less tail operation is much
faster than the response time of the temperature indication system; therefore, it is not certain
whether it would be considered a pulse or a steady-state operation.

From Table 4, the peak fuel temperature change for any of the above pulses where the
scram occurs at 1 second would not reach 350 °C. Note again that the temperatures calculated
would be indicated temperatures; thus, using the conservative 1.43 peak to measured ratio, the
safety limit of 650 °C would not be exceeded if the reactivity insertion is at or below 101 cents
and the scram occurred at 10 seconds or less. Furthermore, a pulse-less tail operation is similar
to a very wide pulse, in that the thermal stresses generated would be much less than the thermal
stress generated in a high yield pulse, which the 650 °C safety limit has been established to
prevent.

Table 5 provides calculated temperatures for the same set of insertions with the scram
occurring at 5 and 10 seconds; however, for these insertions the safety block is assumed to fail to
drop and the pulse rod is the only scramming mechanism. By this table, no permanent damage
will occur if the pulse rod drops, and if the pulse rod drops at 5 seconds, the safety limit of
650 °C will not be exceeded.

TABLE 5. CALCULTED TEMPERATURES -

PULSE ROD ONLY SCRAM
Temperature at 30 Seconds
Reactivity 5 sec 10 sec
99 414 491
100 430 503
101 441 512
102 451 521

Figure 12 shows the power level for a 100-cent insertion plotted on a linear scale with a
scram occurring at 10 seconds. Figure 13 shows the temperature excursion for the same insertion
with a normal scram and a scram failure where the safety block fails to come out, but the pulse
rod does come out. Before the scram occurs, the only change to reactivity is the negative
temperature feedback. When a normal scram occurs at 10 seconds power drops dramatically and
temperature ceases to increase; however, while the small worth of the pulse rod still provides a
drop in power, the temperature will continue to rise slowly.

12

Power(kw)

Temperature(C)

3.5E+03

3.0E+03 §— ‘ —
2.5E+03 T , ;
2.0E+03 T , ’ ~
1.5E+03 | .
1.0E+03 -
5.0E+02 - \ =
0.0E+00 . .
5 10 15
Time(sec)
Figure 12. 100 cent insertion - scram at 10 seconds.
600 - Pr—
500 + , \ S
400 + e TR
normal scram
300 / ' '
200 : /
100 /
0 : , ‘ S
0 10 15 20 25 30

Figure 13. 100 cent insertion - scram at 10 seconds.

5. CONCLUSION

A computer code was written using a point kinetics reactor model to investigate the
behavior of various parameters of the APRF pulse research reactor during pulse operations. The
calculations have been compared to previous theoretical and APRF empirical data to validate the
code. Agreement is good; however, large pulses need to be adjusted because the model does not
account for hydrodynamic effects. Results have shown that if the reactor failed to scram after a
pulse of 107 fissions, core damage would occur in 60 seconds unless the reactor operator was
able to take action. However, if the pulse rod came out of the core, even though the safety block
failed to drop, no permanent damage would occur and the operator would have 90 seconds to

Time(sec)

take action to prevent exceeding a safety limit.

13

The pulse-less tail operation was investigated for delayed scrams at 1, 5, and 10 seconds.
This revealed that for reactivity insertions exactly at prompt critical, no pulse occurs; however,
power rises to approximately 3 MW and steadily decreases until the scram occurs. The
temperature rise for these operations with normal scrams occurring one second after initiation are
well below normal operating temperatures. Furthermore, a safety limit would not be exceeded
for an operation up to a 101-cent insertion with a scram delayed up to 10 seconds. It is not
obvious at this time whether this operation should be classified as a steady-state or pulse
operation.

6. REFERENCES

G. Breidenbach, APR Core Design Summary, United Nuclear Corporation SPAS 66-14,
July 1966

A. H. Kazi, H. A. Kurstedt, and V. E. Gazzillo, Preliminary Analysis of the Effect of Youngs
Modulus on Fast Pulse Reactor Behavior, Memo for Record 78-68, August 1968.

J. T. Mihalczo, Static and Dynamic Measurements with the Army Pulse Radiation Facility
Reactor, ORNL-TM-2330, June 1969.

H. A. Kurstedt, D. E. Glasgow, and T. E. Tipton, Analysis and Monitoring of a Fast Pulse
Reactor Core, BRL contract report number 82, August 1970.

H. Kazi, Army Pulse Radiation Facility Reactor Core III Startup Test Summary Report,
March 1971.

D. L. Hetrick, Dynamics of Nuclear Reactors, University of Chicago Press, 1971.

S. Glasstone, and A. Sesonske, Nuclear Reactor Engineering third edition, Krieger Publishing
Company, 1981.

Technical Specifications for the Army Pulse Radiation Facility, APRF Report 97-6,
August 1997.

14

APPENDIX A DERIVATION OF FORMULAS IN PROGRAM
The point reactor model kinetics equations are:

an_P=B,izac @ ma =P @
a1 i !

Where the following variables are defined:
N neutron population

B delayed neutron fraction

Ai delayed neutron decay constant

p reactivity

¢ prompt neutron lifetime

C; delayed neutron precursor population

The precursor equation (2) may be integrated as:

—A;(t-t")

C(H=e™ [c,.o +% jo n(t')e‘f"dt’] or Ci(t)=C, e +% j: n(t)e a3

—A; (t—tg)

To show how equation (3) is derived, assume C,(t)=f(t)e , where f(t) is an arbitrary

function; thus,

dc,_df,

—Ai(t—to) N(=A. ~A; (t—to)
e F@)(—4e)

Substituting these equations into equation (2)

%f;e—l.i(t—to) + f(t) _ }\‘ie—h(t—%) = %n - kif(t)e—li (t—to)

if_ e_}“i (t-tg)

B,
dt £

g — _B_in(t)e}vi(t-to)
dt ¢

Integrate to get
{GES) :Pj-n(t')e"‘(""°)dt'+const

Substitute f{(t) into the assumption to get equation (3).
Ci(t) = C; e () +%i I: n(t)eM) gy’
Substitute equation (3) into equation (1) to get:
dn _2=P o)+ 24 C et 4y, %) ’o n(t)e " dr’

dt £

Integrate to get
nt)=n,+ '[lo &z-ﬁn(ﬂ)dt’ +ZAC, L 'oe"1l =t0) gy’ +§% J: : dt’ _[:'e-xi(t'-mn(tn)

Evaluate double integral using integration by parts

fudv:uv—fvdu

u= j: n@)erdt” du=n()eM dt

dv=e'dt V= ie"l"'

i

10,’{1

v v

t g [V At qem _ Y s |1 ael gt 1 At 10
_[0 e d dt L) n(t"e™ dt" = Lo n(t")e " dt l: 7 e :I I -—e n(t')de dt
A u %’___J u

=1 a-my 1ot '
-7 nte™ "3) n(t)dt

">ttt
L jt n(t)e Mgt 4+ L | " n(t)dt’
)"i ty ;\‘i t,
Substitute this back into power equation.
— ! p(t')-ﬂ AP b o=At=tg) g0 Eiﬁi t ’ z:ﬂi t A (0-) ger
n(t) = n, + L [l £ 24 C, j e dt + _‘:On(t’)dt e _‘:On(t')e dt

A-2

Since Z;B; =P

n(t) = n, + [' p®n)dt +ZAC, | tentwgy s P [nyer-ar
¢ % 0 Jty ? “to (4)

The equation for reactivity is % =on(t);thus, p(t)=p,+a f n(tdt' (5).

Assume that n(t)=n,e* (6), and each time increment will start with t, = 0. Therefore, the
time increment At =¢—t,=¢t=h. Substituting the power equation (6) into reactivity equation
(5) yields the reactivity equation used in the code.

o) = p, +a_[n,e”dt = p, +7(h 1) -

Substitute equation (6) into the precursor equation (3) and evaluate to derive the precursor
equation used in the code.

C. (t) =C. e—Xi(t—to) + & J-t n eAt'e—li(t—t')dtr
i ig 7 % 0

=C, 1 oJ‘ e Mt (A 4.

oy
C()=C e*"+ L(e(/ﬂli)h _1)
’ LA+ 4) "

The power equation (4) can be evaluated by substituting in the reactivity equation (7) and the
assumption equation (6).

1 h an !’ ' 1.0 h At ’ . h ro_ ¢t
n(t) = n, t5 _fo [po +—1—42(e’” —1)]n0eA dt' +Z,A4C, Io e dt _zi%_J; n e e gy

2 2
n, rh ' on, h ' an, h '
=y + 200 [" oM+ T [ey -0 [M M ar
£ % A 0 {4 9

h
+Z.AC, [1 ﬂif’) -3, Bny o ht J‘ b AR gyt
),,. 0

7Yl ; /

2 24h 4h
Polo , an an, (e -1 e™ -1 iy Bn, (4+4,)h
=n,+——(e” -1+ - -2C e - -1
s €7D L’A[24 4) Gl -1)-2 z(A+,1)(e)

() =n, + 200 (o4 —1)+5‘”£(1(e""’+1>—e”")“20 -1y -, B0 e) o)
£4 242\ 2 T LA+L)

For the computer code to evaluate equation (9) must be solved for A. Thus, set (9) equal to (6).

0=-nye? +n, + L0 opo [e]+ g (_(24h l)— eAhJ—ZiCio (e—,i,-h _1) 5(20 =)(e(Aﬂi)h __1)

The code uses a root finding routine to solve for A; however, a first approximation must be
found. As an approximation let

212
""z1+Ah+A h)

2 212 272
0=rp(l—1—)+ 2222 (14 an-1)+ Do | Yo B0 1)y g AP
24 04\ 2 2 2

— “Mh_1) M -
zC, (™ -1) ZiZ(A+xi)(l+(A+xi)h 1)

mpoh | om AW Ak Bne"h
0=—n,Ah + 2L 0 -2C. -1)-z b0 =
"o ¢ fAz(2 Gl -1)-3, ¢

2p2 ~Ah
modh =" IO o (g 1), B
4 2/ £

C. oAk
Thus, 4= Lo | TR h Z.——"Z—(e""’ -—1)—2,.’3—’e—
¢ 2 nh 4

A-4

APPENDIX B. POINTRX PROGRAM

The program, POINTRX, is run in a DOS window. The name of the executable file is
followed by the name of the input file, followed by the name of the output file. If the input file is
not found in the same directory as the one being executed from and the directory is not indicated
on the command line; then the program will abort with a message stating the input file was not
found. If the output file is not identified on the command line, the program creates or appends a
file called output. An example execution line will look like:

C:\pointrx aprf-in.txt aprf-out.txt

The input file does not need to be a wordpad, notepad, or any other word processor file,
but it must be a text file. Any comments after a double slash (//) are ignored as comments, thus
the sample input file, included in this appendix as page 2, has many comments to show the
location of all the inputs. The output file will identify at the beginning of the file all the inputs
used in the program, without the comments. After the program has read all the constants, the
initial time will be the start time for the output. There must be at least two lines for the program
to run so that the program has a start time and a stop time.

The code assumes that the power in each time increment follows the form: n,e”™. The
code determines the free parameter A (the inverse period) to satisfy the integral equations at the
beginning and end of each time increment. To check whether the exponential form is correct
throughout the time interval h, the code makes two comparisons. First, the code compares the
power at the end of the interval using the previous value for A, with a new value for A, selecting
the best value. Second, the code computes new parameter A by solving the integral equation over
a time period h/2. If the two values do not match, the time interval is halved and the process
repeated. For each time increment, an attempt is made to stretch the time period h.

The program uses the first time increment as the initial guess for the time variable, h. Thus,
if a large time increment is used, the “bad guess” message will appear on the screen until the
program finds an appropriate value. The program will run for any number of time intervals or
reactivity insertions or withdrawals. The time increment is also the data output interval the
program uses to write data to the output file; thus increase the time increment for less data and
shorten it for more data. A sample beginning of an output file is included in this appendix as
page 3.

B-1

//******DATA INPUT FILE FOR POINTRX PROGRAM -- APRF STD CORE VALUES*** %%

//

// fast fisson values from G.R. Keepin(cl1965) using B of 0.0068

//

//
//

//degress C/kw-sec

//
//
//
/7
/7
//

beta

0.0002
0.0014
0.0012
0.0027
0.0008
0.0001

584
484
784
676
704
768

WP OOOOo

lambda
.0127
.0317
.115
.311
.40
.87

thermal coefficients
cents/degree C
-0.3

0.0468

3

neutron
lifetime (sec)

1.0e-8

time increment is the data output interval

initial time

sec
0.0
l.e
2.e
50.
52
55
57
60.
70.
80.
90.

100.
120.
130.
140.
150.
160.
170.
180.
190.
200.
210.

0.5
1.0
10.
30.

-3
-3
Oe-3

.5e-3
.0e-3
.5e-3

®
|
w

2 e
o www

(D(D('?(?([')(!I)(D(D(D(D(D
WWWWwWwwwwwww

0
0
0

time increment
sec

e =T e R e e O e T e g g g S S U S T S S W S SN
e

.

oo O

ol NeoleNoNeoNeoNoNoNoNoNoNoNoNoNoNoNoNoNe e

OO0 O00000DDMDOODdMD®ODD®DOD0DOO | 1|
W O,

i

|

NDNWWWWwWwWwWwWwwwwwwwwwwww

initial reactivity

$
.05
.00
.00
.05
.10
.10
.25

joNeBeoBoloBoNoNoNoNoNoNoNoNeNals)]
o

o O
o O

B-2

inital

core tempC)

25

initial power

kW

0.001 //

pulse rod insert

SB begins to move
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
scram
SB completely out

INPUT FILE DATA:

0.0002584 0.0127
0.0014484 0.0317
0.0012784 0.115
0.0027676 0.311
0.0008704 1.40
0.0001768 3.87
0.04683 -0.3 1.0e-8 25
0.0 l.e-5 1.05 0.001
l.e-3 l.e-3 0.00
50.0e-3 1.0e-3 -0.05
52.5e-3 1.0e-3 -0.10
55.0e-3 1.0e-3 -0.10
57.5e-3 1.0e-3 -0.25
60.e-3 1.0e-3 -0.5
70.e-3 1.0e-3 -1.0
80.e-3 1.0e-3 -1.0
90.e-3 1.0e-3 -1.0
100.e-3 1.0e-3 -1.0
120.e-3 1.0e-3 -1.0
130.e-3 1.0e-3 -1.0
140.e-3 1.0e-3 -1.0
150.e-3 1.0e-3 -1.0
160.e-3 1.0e-3 -1.0
170.e-3 1.0e-3 -1.0
180.e-3 1.0e-3 -1.0
19C.e-3 1.0e-3 -1.0
200.e-3 1.0e-3 -1.0
210.e-3 1.0e-3 -1.0
0.5 1.0e-2 0.00
1.00 0.1 0.00
10.0 1.0 0.00
30
BEGIN OUTPUT DATA:
time power (kW) temp rho 1/period
0.000000e+000 1.000000e-003 2.500000e+001 7.140000e-003
1.000000e-005 9.503938e-003 2.500000e+001 7.140000e-003 1.054957e+005
2.000000e-005 2.145182e-002 2.500000e+001 7.140000e-003 6.572550e+004
3.000000e-005 3.823869e-002 2.500000e+001 7.140000e-003 5.178624e+004
4,000000e-005 6.182468e-002 2.500000e+001 7.140000e-003 4.50118%e+004
5.000000e-005 9.496391e-002 2.500000e+001 7.140000e-003 4.115234e+004
6.000000e-005 1.415261e-001 2.500000e+001 7.140000e-003 3.881214e+004
7.000000e-005 2.069484e-001 2.500000e+001 7.140000e-003 3.729766e+004
8.000000e-005 2.988707e-001 2.500000e+001 7.140000e-003 3.627950e+004
9.000000e~-005 4.280272e-001 2.500000e+001 7.140000e-003 3.559906e+004
1.000000e-004 6.095005e-001 2.500000e+001 7.140000e-003 3.511921e+004
1.100000e-004 8.644826e-001 2.500000e+001 7.140000e-003 3.479718e+004
1.200000e-004 1.22274%e+000 2.500000e+001 7.140000e-003 3.456455e+004

B-3

delta-t

BNONMRER RO WN

.242261e-008
.672489%e-008
.905765e-008
.867678e-008
.312402e-008
.282834e-007
.203567e-007
.930491e-007
.649125e-007
.366062e-007
.246515e-007
.432042e-007

//POINTRX - computes reactor power (n0) using weighted residual method

#include "stdafx.h"

#define LINELENGTH 121 // Max length of input/output
line

#define MAXTRIES 25 // Max number of times to
subdivide h

//global variables

/

static double smallNumber=1.0E-10;

double n0, rho, nRho, c[6], temp;

double alpha2, alphal, ngentime, time_increment, time;
double power, nTime, nTime_increment, milestone;
double ttime, beta[6], lambda[6], beta_sum;

”******#**

//" compute (exp(a*h)-1)/a safely, with no divide by zero.
I f1->A
double aexp(double f1, double £2)

if (fabs(f1) > smallNumber) return ((exp(f1*£2)-1.0)/f1);
else return (2 + 0.5*f1*£2*£2);
b

”**
// Put a line into output file.

I
void putLine(FILE *fp, char *line)
int index, out;

for (index=0; index<LINELENGTH; index++)

{
out = fputc(linefindex], fp);
if (line[index] == "\n") return;
b
return;
3

”**

/1 Get a line from input file.

// Ignore lines after double-slash "//".
// Ignore blank lines

i

int getLine(FILE *fp, char *line)

{

int index, ii;
char letter;

for (;;) // Read until line without //

{

memset(line, ' ', LINELENGTH); // Clear line

for(index=0; index<LINELENGTH; index++)

{
letter = fgetc(fp);
if (letter == EOF) // Treat end-of-file as end-of-line
{
letter = "\n';
if (index == 0)
{
printf("End of file found\n");
return 0;
3
35
line[index] = letter;
if (letter == "\n")
{ // Finished
reading line
for (ii=0; ii<index-1; ii++)
if ((line[ii]=="") && (line[ii+1]=="")) // Check for //
linefii] = "\n';
break;
35
35
if (line[0] == "n') break; /I Check for empty line.
else return 1; // else done.
I
35
if (index >= LINELENGTH) " // If an input line was too long
{
printf("Input line too long."); // inform
line[LINELENGTH-1] = "\n';
return 1; // and terminate
b
3
|5
//**
int getData(FILE *fp)
{
char line[LINELENGTH];
printf("Retrieving data from file.\n");
if (getLine(fp, line) == 0) return 0; // Get data from input file
if (sscanf(line, "%Lg%Lg%Lg%Lg", &nTime, &nTime_increment, &nRho, &power) == 0) return 0; // read data
nRho = beta_sum*nRho; // Convert reactivity
if (power<1.e-6) power=1.0e-6; // initial power > 0
return 1;
}

//**

int initialization(FILE *{p1, FILE *{p2)

B-5

{
int i;
char line[LINELENGTH];

printf("Initializing.\n");

sprintf(line, "%s\n", "INPUT FILE DATA:");
putLine(fp2, line);

while(getLine(fpl, line) !=0) // ' Write entire input file to output file
{

putLine(fp2, line);

fprintf(fp2, "nBEGIN OUTPUT DATA:\n");

fseek(fpl ,0L, SEEK_SET); // Reset input file pointer to beginning
of file

for(i=0; i<6; i++)

if (getLine(fp1, line) == 0) return 0; // Get data from input file
if (sscanf(line, "%Lg%Lg", &beta[i], &lambda[i]) == 0) return 0; // read data
}
if (getLine(fp1, line) == 0) return 0; // Get data from input file
if (sscanf(line, "%Lg%Lg%Lg%Lg", &alphal, &alpha2, &ngentime, &temp) == 0) return 0; // read data
for(beta_sum=0, i=0; i<6;i++) beta_sum += betali];
alpha2 = alpha2*beta_sum*alpha1/100; /lconverttemp coeff cents/degree C to reactivity/kw-sec
return 1;

}

”**

double function(double Aest, double h)
{

int i;

double sum=0.0;

sum = n0-n0*exp(Aest*h);
sum = sum + n0*rho*aexp(Aest,h)/ngentime;

if(fabs(Aest)<0.00001)

sum = sum -+ (alpha2*n0*n0*h*h)/(ngentime*2);
else

sum = sum + (alpha2*n0*n0/(ngentime*Aest*Aest))*(O.5*(exp(2*Aest*h)+1)—exp(Aest*h))'

>

for(i=0;i<6;i++)

{

sum = sum - c[i]*(exp(-lambda[i]*h)-1.);

sum = sum - (beta[i] * n0 * exp(-lambda[i]*h) * aexp(Aest+lambdali],h))/ngentime;
}
return(sum);

”***

/1 Finds a value x which gives func(x, h)=0.
// Input a first approximation x.
double root_find(const double x, const double h)

double x_low, x_hi; // These bracket x
double f _low, f hi, f x; // func(x_low), func(x_hi), func(x)

B-6

double x_low_old, x_hi old, f low_old, f hi_old;

double x_try, f try, x_tryl, f tryl, offset;
double convergeS=1.0E-20;
double convergeX=1.0E-5;
double eps=1.0e-20;
double perturb=0.2;
initial search
double limit1=1000.0,limit2=1.0E+10;
double P, Q, R;
int iter, max_iters=100;

f x = function(x, h);
if (fabs(f_x)<eps) return x;

// Done if abs(func(x))<converge
// Done if x_low and x_hi match
// Small number
// Amount to perturb x in

// Limits range of search

// Limit iterative improvement.

// Need to bracket x. Want to end with func(x_low)*func(x_hi)<0.
// This sign change means that desired x is between x_low and x_hi.

// Vary x and look for a crossing of axis.

// Expand region around x until zero crossing found.

offset = fabs(x)+0.1;
x_low _old=x;

// scale factor to search around x
// Lower limit of last search.

x_hi old =x; // Upper limit of last search
f low old={ x;
f hi old =1 x;
do
{
x_low =x_low_old - perturb*offset; // Vary low.
f low = function(x_low, h);
if (f low*f x<0)
{
x_hi=x low old; // Found zero crossing
f hi=f low_old;
3
else // Did not cross
Zero
{
x_low old=x_low; // March down if needed
f low_old={ low;
x_hi=x hi old + perturb*offset; // vary high
f_hi = function(x_hi, h);
if (f hi*f x <0)
// Found

zero crossing on high side
X _low=x hi old;
f low=1 hi old;

}
else
{
x_hi old=x hi;
f hi_old={ hi;
35

b
perturb = 1.2*perturb;

/I No crossing. Extend boundary.

// Increase range for next search

if (perturb>limit1) printf("%s"," Poor guess.\n");

if (perturb>limit2)
{

printf("%s"," Search for root stopped.\n");
return x;

3
} while (f_low*f hi> 0); /I Check to see if root bounded

// Root is bounded by x_low and x_hi.

/ Try to improve root by selecting a new value x in the middle and fitting a quadratic.
// Use end best points to develop new x_low and x_hi.

for (iter=0; iter<max_iters; iter++)

{
X_try =0.5*(x_low+x_hi); // Point in the middle
f_try = function(x_try, h); // Evaluate function there.
if (fabs(f_try)<convergeS) return x_try; // Got lucky. Done.
if (fabs(f_low-f_try)<eps || fabs(f_hi-f_try)<eps ||
fabs(f_low-f_hi)<eps) // divide by 0?
{
existing value;
X_tryl =x_try;
f tryl =f try;
}
else
{
quadratic guess
P=f low-f try;
Q=1 low-f hi;
R=f try-f hi;
x_tryl =f try*f hi*x_low/(P*Q);
x_tryl -= ((f_low*f_hi*x_try)/(P*R));
x_tryl += ((f_low*f_try*x_hi)/(Q*R));
f_tryl = function(x_try1, h);
|5
if (f_try*f low <0) /I At least divide region by 2
{
x_hi=x try;
f hi=f try;
}
else
{
x_low =x_try;
f low =f try;
b
if ((x_tryl>x_low) && (x_try1<x_hi))
{ 1x_tryl
within boundary
if (fabs(f_try1)<convergeS) return x_try1; // Done.
if (f_tryl1*f low <0)
{
x_hi=x_tryl;
f hi=f tryl;
}
else
{
x_low=x tryl;
f low=f tryl;
b
b

B-8

if (fabs(f_hi-f low)<convergeS) return (0.5*(x_hi+x_low)); // Return if both are close to 0
if (fabs(x_hi-x_low)<convergeX) return (0.5*(x_hi+x_low)); //Return ifx_hi and x_low match

printf("%s"," Exceeded iteration limit in root_find.\n");
return (0.5*(x_hi+x_low));
3

”***

/I Can use either calculated vaule or old value.
i
double calculate A(double h)
{
int i;
static double Aold =0.0;
double Aguess=0.0;

for(i=0; i<6; i++)

{
}

Aguess = Aguess + rho/ngentime-+alpha2*n0*h/(2*ngentime);
if (fabs(function(Aold, h)) < fabs(function(Aguess, h))) Aguess = Aold;
Aold =root_find(Aguess, h);
return Aold;
b

”**

Aguess =Aguess-(c[i]*aexp(h,-lambda[i])/n0)-(beta[i]*exp(-lambda[i] *h)/ngentime);

/I Compute next time at which to print data
"
void nextMilestone()

if ((milestone + time_increment)> nTime)
milestone = nTime;
else milestone = (milestone + time_increment);

b
”**

int main(int argc, char *in[])

FILE *in_file;
FILE *out _file;
double deltaTime, h, Afactor;
double Atry, Ahalf;

int ii, i;
double tolerance = 1.0E-6;
char line[LINELENGTH];

in_file = fopen(in[1], "r"); // Open input file
if (in_file ==NULL)
{
printf("Cannot open %s for input.\n", in[1]);
return 1;
1
if(in[2]==NULL) out_file = fopen("output.txt", "a+");
else out_file = fopen(in[2], "a+"); //append output file, create if needed
if (out_file ==NULL)

B-9

printf("Cannot open file for output.\n");
return 1;

b

if (initialization(in_file, out_file)==0) return 1; // initialize constants

sprintf(line," %s\n"," time power (kW) temp rho I/period delta-t");

putLine(out_file, line); // milestone => print;
if (getData(in_file)==0) return 1; /I get starting data

n0 = power;

time = nTime;

time_increment =nTime_increment;

rtho = nRho;

for(ii=0; ii<6; ii++) c[ii]=beta[ii]*n0/(lambda[ii]*ngentime); // initialize precursors

if (getData(in_file)==0) return 1; // get next time marker

sprintf(line," %e %e %e %e \n", time, n0, temp, rho);
putLine(out_file, line);

h=time_increment; // Initial guess for h
nextMilestone();

while(time_increment>0.0) /' Use this as end of problem marker
{

Atry = calculate_A(h);
for(ii=0; ii<MAXTRIES; ii++)

{
Ahalf = calculate_A(h/2.); // Keep subdividing h until A stabilizes
if ((fabs(Atry-Ahalf)*h)<tolerance) break;
Atry = Ahalf;
h =h0/2.0;
3

if (ii==MAXTRIES) printf{"At time = %LE A did not converge",time);
if ((time+h+smallNumber)>= milestone) deltaTime = milestone-time;
else deltaTime = h;
time = time + deltaTime;
n0 = n0*exp(Atry*deltaTime); '
if(n0>0.5) // No temperature
adjustments below 500watts
{
Afactor = aexp(Atry,deltaTime);
temp = temp + alphal*n0*Afactor;
rho = rho + alpha2*n0* Afactor;
}

for (i=0; i<6; i++)

c[i] = c[i]*exp(-lambda[i]*deltaTime) +
((beta[i]*nO*exp(-lambda[i]*deltaTime)/ngentime)*aexp(AtryHambda[i] ,deltaTime));
3

if (time >=(milestone-smallNumber))

sprintf(line," %e %e %e %e %e %e\n", time, no, temp, rho, Atry, h);
putLine(out_file, line); // milestone => print;
nextMilestone();

if (time >= (nTime-smallNumber))

B-10

time_increment =nTime_increment;

rho = rho + nRho;

if ((nRho > beta_sum/1000.) && (h>1.0e-6)) h = 1.0e-6;
if (getData(in_file)==0) return 1;

nextMilestone();

}
3
h=h*5.0 + 1.0e-9;
3

fclose(in_file);
fclose(out_file);

printf("Finished.\n");
return 0;

B-11

// get next time marker

// Try to stretch h

// Close input/output files

(Page B-12 Blank)

APPENDIX C. HEAT CAPACITY DERIVATION

Figure 1 is a plot of the temperature data collected from thermocouple No. 7 during an
8-kW steady-state operation at 20 feet. No cooling was used during the run so that the
temperature rise should be similar to that of a pulse operation. However, the graph is not exactly
linear; as expected, the higher the temperature the more heat will be radiated away from the core.
This is more evident in Figure 2, which is a plot of the heat capacity obtained from the data from
the same operation. Low power steady-state operations will eventually reach an equilibrium
temperature where the heat generated is equal to the heat being radiated away. Time zero in the
graph is the point where the reactor is at 1/e for 8 kW, and reactor power is at 8 kW at

120 seconds.

To determine the heat capacity of the core, find the slope of the line by dividing a change
in temperature by the change in time:

AT = 219-99 = 120 = 0.3333°C
At 540-180 360 sec

Next, divide this number by the operating power level to get 0.04167 °C/kW-sec. This is
within 5 percent of the value derived from previous operating data on the following sheets. The
shutdown time for this operation was 600 seconds. Beyond this point the core is cooling down,
with no power input, by radiating heat. The slope of this portion of the curve is -0.14 °C/sec. If
this is added to the heat capacity, it raises the value to 0.0590 °C/kW-sec, and there is only a
5 percent difference between the heat capacity derived by this method and the method using
pulse and temperature data given in the main report. Furthermore, this value compares to the
peak of the heat capacity from Figure 2, 0.054 °C/kW-sec.

T7 Temperature(C)
o
o

0 ‘ T — T ~ I“ T 7[» ‘ r 1
0 120 240 360 480 600 720 840
Time(sec)

Figure 1. 8KW - no cooling - SS02-60.

C-1

o

Q ®
§ 4E02 \

@
§ 2.E-02 te b
0 p
g 0.E+00 — ——
- []
é’ 2.E-02 M

-4.E-02

0 120 240 360 480 600 720 840
Time (sec)

Figure 2. Heat capacity.

Changing the heat capacity does not alter the reactor period, pulse width, or temperature
change, only the integrated power. That is why this parameter was used to calibrate the program
to fit empirical data. Furthermore, since temperature changes are not affected by the heat
capacity, the heat capacity used for temperature analysis is irrelevant.

C-2

TE

e

PR

.3

28

v

R BTN
g4 2.
LRI

-
Cs

PR O 1

O 1

WMAIE i W T A

5

JUURTISTINE S APOIPN SSONNMS O

EULANE D TI0EN LA

- FIGIRE 31

e e 0o

S~
- et nie,

PN P

(1 BT8R SN

DILIEOLS
7

R

[
FETTRETSR P

EoE]

oy

Jone

o s b« o+

B

Covnests ton b o b

PRROSE OOy PSP

B

i
i

oy '
i i
P Y
34 H
T H
Y i
crntiem
i
RS BN
i.
: <
i
b :
H X
4 e
i b
H L.
e
2}
=
=

[ECRSIN SN e

i,

Lo s
[

o~
~ j-

b LA LSS B -3 W TT.]
- IS BV eE RINLLIG UL ATeG e

i At Tz ey

C-4

N KIS PTY v —— R LR [RPN

Aty

333

; : 2

JERIEY SUCRNF SIS L P I e L friiziisiozs

oo

hind s 30

SR, SRS
A A

IS8

e RIIRdNts s
e

R

.

SE 301

o B Fava SN N 57w L .
Iy e ROT Bl RBILOGYY M UEVrE AP ATS AN 0 DB SUNG O

(Page C-6 Blank)

C-5

APPENDIX D. SAFETY BLOCK AND PULSE ROD TIMING

Safety Block Drop Test June 2002

I L R R S R

»
i
T

R Es!
o
L3}

B e

‘r_‘

)
i

-

SO SO 30
Py

.

D-1

LPEPE A
-
IR

-t mv

2
[

.

v REE sl 8o =
e = - - - .= ;5;__ ..
L & : . =

2]

fugiin - ot Lo EA
EEEE LT oo LT ‘ : :
———
Sy
..
I
iy
L
. L
MY
!
. ’
’ \":‘ ! - pn——
-
{
: - ‘H%*Mﬂr‘\
; N
i :
. " '
I i :
i ' '
a ;_
! :
H :
i ! ,
'
mmmm e ST T lempiems— -
It ey
Ll EEtadipssd

AT ATAT T WG W R T W
1

Scroam sxgno.l to Pu\se rod out

e e i e e i e e g ¢ e v e oen @ e g . I e
R]
..rm — .
. : 1 . :
L7} R H X . : .
(s} . : e * . 4 ¢
= o - o i
O . . .
: [C : : col o
B - . = 1 -
N A M H : ITN
H : . . : . vw.n
) : 3
- w X lv—ﬂ.
i S - B R - ;- e o
v : . I . . g A
€} . . ol - .
: . _ S &
£ B S A SECTEREETT R I B £
e R e : :]
_ et . e s : . &
PR R . , ; bt
b . » : m
: BN B DR U A5 I S m
ca . . (¥p]

e e e it ot e et i - -
— ¥
s BEom T T i £ PR it
iyos B e fu-e o - = f‘ - N
B ¢} o~ = P
- b
L Py

b l m _r - _:_4 - \ -
YA - - = s - o
R
—
.
M
i
eI
i
.-
Sl omn :
- oo
K H
R EH
e
- - —— ..
_— T - :
- B - w%mw —
- 5 Lo
el 3 ¢
al
. L
-4t N . i
ot . %
<z it H 1
e e ene : i
S B H i
—— i
. .
e —

Pulse ro& s*ou:\' ou"f Yo pU\SE tod w'\‘

.
‘ 1
e n e
BN s :
L
-t e

e “

S T VT
et Adn Al AN N H

Polse rod stast ouf fo polse rod oot vsingy whhdeaw

D-5
(Page D-6 Blank)

